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Abstract

We analyze various Indian calendars. We discuss the Indian day count, a generic solar calendar that generalizes
various calendars including the mean Indian solar calendar, the true and astronomical Indian solar calendars, a generic
lunisolar calendar that generalizes the Indian version, and the true and astronomical Indian lunisolar calendars. We also
discuss aspects of the traditional Indian calculation of the time of sunrise and the determination of lunisolar holidays.

The months of the Hindus are lunar, their years are solar;

therefore their new year’s day must in each solar year

fall by so much earlier as the lunar year is shorter than the solar.. ..
If this precession makes up one complete month,

they act in the same way as the Jews,

who make the year a leap year of thirteen months. ..,

and in a similar way to the heathen Arabs.

—Alberuni’s India.

1 Introduction

The world’s many calendars are of three primary types: diurnal, solar, and lunar—see our Calendrical Calculations:
Millennium Edition [5] (henceforth CCME). All three are represented among the many calendars of the Indian sub-
continent.

o A diurnal calendar is a day count, either a simple count, like the Julian day number, or a complex, mixed-radix
count, like the Mayan long count. The classical Indian day count (ahargana) is used for calendrical purposes.

e Solar calendars have a year length that corresponds to the solar year. All modern solar calendars add leap days
at regular intervals to adjust the mean length of the calendar year to better approximate the true solar year. The
solar (saura) calendar is more popular in northern India; a similar one is in use in Nepal.m

e A [unar (candra) calendar has as its primary component a mensual unit that corresponds to the lunar synodic
month. It can be purely lunar, as in the twelve-month Islamic calendar year, or it can incorporate occasional leap
months, as in the Hebrew lunisolar calendar. Several forms of lunisolar calendar are in use in India today; the
Tibetan Phuglug calendar is somewhat similar/?

In general, a date is determined by the occurrence of a cyclical event (equinox, lunar conjunction, and so on)
before some “critical” time of day, not necessarily during the same day. For a “mean” (madhyama) calendar, the event
occurs at fixed intervals; for a “true” (spasta) calendar, the (approximate or precise) time of each occurrence of the
event must be calculated. Various astronomical values were used by the Indian astronomers Aryabata (circa 300 C.E.),
Brahmagupta (circa 630 C.E.), the author of Sirya-Siddhanta (circa 1000 C.E.), and others.

Indian month names are given in Table[1. Tamil names are different.
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'We have to date been unable to ascertain the precise rules of the Nepalese solar calendar.

2We have to date been unable to ascertain the precise rules of the Tibetan lunisolar calendars.



Vedic Zodiacal Sign Sanskrit Month Sanskrit
1 | Madhu Mesha (Aries) qY Chaitra I
2 Madhava | Vrshabha (Taurus) AR Vaisakha EruEcy
3 Sukra Mithuna  (Gemini) mer Jyeshtha Y
4 | Suchi Karka (Cancer) X Ashadha CINICY
5 | Nabhas Simmha (Leo) fag Sravana HTFT
6 | Nabhasya | Kanya (Virgo) ST Bhadrapada ¥Tg9<
7 | Issa Tula (Libra) qeT Asvina ATt
8 | Urja Vréchika  (Scorpio) Q'FQ?‘T Kartika EQIGED
9 | Sahas Dhanu (Sagittarius) = Margasirsha  HTITSY
10 | Sahasya Makara (Capricorn) H&T Pausha RIAE
11 | Tapas Kumbha  (Aquarius)  &%T Magha HTE
12 | Tapasya Mina (Pisces) qIer Phalguna AT

Table 1: Indian month names.

| Era | Current Year | Elapsed Year |

Kali Yuga +3102 +3101
Nepalese +877
Kollam +823

Vikrama +58 +57
Saka —77 —78
Bengal —593
Caitanya —1486

Table 2: Some eras, given as the offset from the Gregorian year.

We ignore many trivial differences between alternative calendars, like eras (year count). Some Indian calendars
count “elapsed” years, beginning with year 0; others use “current”, 1-based years. The offsets of some common eras
from the Gregorian year are summarized in Table[2. There are also regional differences as to which is the first month
of the year. Finally, calendars are local, in the sense that they depend on local times of sunrise, and the like.

We systematically apply the formulas for cyclic events in Chapter 1 of CCME to derive formulas for generic mean
single-cycle and dual-cycle calendars. Solar calendars are based on the motion of the sun alone, so fit a single cycle
pattern; lunisolar calendars, on the other hand, take both the solar and lunar cycles into account, so require double-
cycle formulas. We apply these generic algorithms to the old Indian solar and lunisolar calendars, which are based on
mean values (see Chapter 9 of CCME). We also use the code in CCME to compare the values obtained by the much
more complicated true Indian calendars (Chapter 17 of CCME) with their modern astronomical counterparts. Unless
noted otherwise, we center our astronomical calculations on the year 1000 C.E.

The next, brief section describes the Indian day count. Section[3 presents a generic solar calendar and shows how
the mean Indian solar calendar fits the pattern. It is followed by a section that compares the later, true calendar with
modern astronomical calculations. Similarly, Section [5 presents a generic lunisolar calendar and its application to
the Indian version, and is followed by a section on the true and astronomical versions. Section 7] discusses aspects
of the traditional calculation of the time of sunrise. Finally, Section 8 outlines the difficulty of computing the day of
observance of holidays based on the lunisolar calendar.

Following the style of CCME, the algorithms in this paper are presented as mathematical function definitions in
standard mathematical format. All calendar functions were automatically typeset directly from the Common Lisp
functions listed in the appendix.



Date (Julian) J.A.D. Ahargana R.D.
2 January 4713 B.C.E. (noon) 1 —588,464.5 —1,721,423.5
18 February 3102 B.C.E.  (midnight) 588,465.5 0 —1,132,959
3 January 1 C.E. (midnight) | 1,721,425.5 1,132,960 1

Table 3: Day count correlations.

2 Diurnal Calendars

In most cases, a calendar date is a triple (y,m,d), where year y can be any positive or negative integer, and month
m and day d are positive integers, possibly designated “leap”. A day count is convenient as an intermediate device
for conversions between calendars. One can count days from the first day of a calendar, normally (1,1, 1), called the
epoch. So (1,1,1), {1,1,2), and so on correspond to (elapsed) day count 0, 1, and so on. Days prior to the epoch have
negative day counts and non-positive year numbers. Day counts can be 0-based or 1-based; that is, the epoch may be
assigned 0 or 1. In CCME, we use the Rata Die (R.D.) count, day 1 of which is 1 January 1 (Gregorian).

The ahargana (“heap of days”) is a 0-based day count of the Kali Yuga (K.Y.) era, used in Indian calendrical
calculations. The K.Y. epoch, day O of the ahargana count, is Friday, 18 February 3102 B.C.E. (Julian). Its correlations
with R.D. and with the midday-to-midday Julian Day Number (J.A.D., popular among astronomers) are given in
Table[3. An earlier count, with much larger numbers, was used by Aryabata. We use the onset of the Kali Yuga, R.D.
—1,143,959, for our hindu-epoch.

3 Mean Solar Calendars

The modern Indian solar calendar is based on a close approximation to the true times of the sun’s entrance into the
signs of the sidereal zodiac; the Hindu names of the zodiac are given in Table [1. Traditional calendarists employ
medieval epicyclic theory (see Section 17.1 of CCME); others use a modern ephemeris. Before about 1100 C.E.,
however, Hindu calendars were usually based on average times. The basic structure of the calendar is similar for both
the mean (madhyama) and true (spasta) calendars. The Gregorian, Julian and Coptic calendars are other examples of
mean solar calendars; the Persian and French Revolutionary are two examples of true solar calendars. In this and the
following section, we examine these two solar calendar schemes.

The Indian mean solar calendar, though only of historical interest, has a uniform and mathematically pleasing
structure. (See [3] for connections between leap-year structures and other mathematical tasks.) Using the astronomical
constants of the Arya-Siddhanta, yields 149 leap years of 366 days, which are distributed evenly in a cycle of 576 years.
Similarly, 30-day and 31-day months alternate in a perfectly even-handed manner.

3.1 Single-Cycle Calendars

The mean solar calendar is an instance of a general single-cycle calendar scheme. Consider a calendar with mean year
length of Y days, where Y is a positive real number. If Y is not a whole number, then there will be common years of
length | Y| and leap years of length [Y], with a leap-year frequency of ¥ mod 1.

To convert between R.D. dates and single-cycle dates, we apply formulas (1.65) and (1.68) from Section 1.12 of
CCME. Suppose that a year is divided into months of length as close to equal as possible. For a standard 12-month
year, the average length would be M =Y /12. Some months, then, should be |M| days long, and the rest [M] days.
A day is declared New Year if the solar event occurs before some critical moment. In other words, if 7, is the critical
moment of day n, then n is New Year if and only if the event occurs during the interval [t, — 1,,). (The beginnings
of new months may be handled similarly or may be determined by simpler schemes, depending on the calendar; we
discuss this below.)

Suppose that the sun was at the critical longitude at the critical time 7_; of day —1, the day before the epoch, so
that day —1 just missed being New Year. Finally, assume that a leap day, when there is one, is added at year’s end.
The number of elapsed days from the calendar’s epoch (0,0,0) until a date (y,m,d) (all three components are for now



0-based) is simply:
Y]+ [mM]| +d M

with inverse

y = [(HBI)J/Y]_I

n'=n- Y

m=[(n+1)/M]—1 2
d =n—|mM|

If the rule is that the event may occur up to and including the critical moment, then n is New Year if and only
if the event occurs during the interval (¢, — 1,2,]. Accordingly, we need to change some ceilings and floors in the
above formulas. Supposing that the event transpired exactly at that critical moment 7y of the epoch, the elapsed-day
calculation becomes

[YY]+ [mM] +d 3)

The inverse function, assuming ¥ > M > 1, converting a day count n into a O-based date, {y,m,d), is

y = Ln/Yg1
n = nmodY
m = |n'/M| “

d = |n' mod M|

The above four formulas assume that months are determined in the same way as are years, from a specified average
value M, and, therefore, follow the same pattern every year (except for the leap day in the final month of leap years).
There is an alternative version of mean solar calendars in which month lengths vary, and are determined by the mean
position of the sun each month. In this case, we combine the calculation of the number of days in the elapsed years
and those of the elapsed months, giving

yY +mM| +d 3)
or
|'yY + mM] +d (6)

depending on whether the “before” or “not after” version is required. The inverses for these two variable-month
versions are

y = [+ 1)/¥] -1
m' = [(n+1)/M] -1

m = m' mod 12 7
d =n—|mM|

or
y = [n/Y]
m = |n/M| mod 12 (8)
d = |[nmod M|

respectively.

3.2 Generic Single-Cycle Calendars

The critical event for a calendar sometimes occurs exactly at the calendar’s epoch (K.Y., in the Indian case). However,
often an additional complication is introduced, wherein the relevant critical event occurred some fraction of a day
before the critical time for the epoch. Furthermore, the cyclical month pattern may have its own starting point.
Accordingly, for the fixed-month calendar, we are given the following constants:

1. the calendar epoch, single-cycle-epoch, an integer;



2. the offset of the first critical event, delta-year, a number in the range [0,1);

3. the average year length, average-year-length, of at least 1 day;

4. the average month length, average-month-length, at least 1 day long, but no longer than an average year; and
5. the offset for the first month, delta-month, also in the range [0, 1).

The critical yearly event for the epochal year occurred delta-year days after the earliest possible moment, which is
1 — delta-year days before the critical time; the critical monthly event for the first month of the calendar occurred
delta-month days after its earliest possible time.

To convert a single-cycle 1-based date to an R.D. date, we add to the epoch the days before the year, the days
before month in year, and the days before day in month, taking the initial offsets into account:

fixed-from-single-cycle )

(‘ year ‘ month ‘ day D dgf

single-cycle-epoch+ | (year — 1) x average-year-length + delta-year| +
| (month — 1) x average-month-length + delta-month| + day — 1
In the other direction, we compute the single-cycle date from an R.D. date by determining the year from the start

of the mean year using (1.68), the month from (1.68) applied to the month parameters, and the day by taking the
remainder:

single-cycle-from-fixed (date) def (10)
‘ year ‘ month ‘ day ‘
where
days = date — single-cycle-epoch
days + 1 — delta-year
year =
average-year-length
n = days— | delta-year+ (year — 1) x average-year-length |
n+ 1 — delta-month
month =
average-month-length
day = n+1— | delta-month+ (month— 1) x average-month-length |

The Coptic calendar, with average-year-length of 365% days, is also a single-cycle calendar, but we need to
use a fictitious average-month-length of 30 to accommodate its twelve 30-month days, which are followed by
an extra “month” of epagomené lasting 5-6 days. Also, single-cycle-epoch = R.D. 103,605, delta-year = %, and
delta-month = 0. Compare Table 1.3 and Chapter 4 of CCME.

The Julian (old style) calendar, on the other hand, even though it has the same year length as the Coptic, does not
fit our scheme, on account of its irregular month lengths. See Chapter 3 of CCME.

It should be stressed that for these functions to operate correctly for rational parameters, precise arithmetic is
incumbent. Otherwise, four years, say, of average length 365?11 might not add up to an integral number of days,
wreaking havoc to functions using floors, ceilings, and modular arithmetic.



For the alternate version, where the critical event may occur at the critical time, delta-year is the fraction of the
day before the critical moment of the epoch at which the event occurred. We have, instead:

alt-fixed-from-single-cycle (11)
def
(‘ year ‘ month ‘ day D =

single-cycle-epoch + [(year — 1) x average-year-length — delta-year| +
[ (month — 1) x average-month-length — delta-month]| + day — 1

def

alt-single-cycle-from-fixed (date) = (12)
‘ year ‘ month ‘ day ‘
where
days = date — single-cycle-epoch + delta-year
days
year = 2 +1
average-year-length
n = (days mod average-year-length) + delta-month
n
month = +1
average-month-length
day = |n mod average-month-length| + 1

This version, too, works for the Coptic calendar, but with delta-year = %

Now for the variable-month version. As before, we have the epoch of the calendar single-cycle-epoch, the
average year length average-year-length, and the initial offset, delta-year. However, instead of the fixed-month
structure given by average-month-length and delta-month, we simply specify the number of months in the year,
months-per-year. To convert between R.D. dates and dates on this single-cycle mean calendar, we again apply for-
mulas (1.65) and (1.68) from Section 1.12 of CCME, but with minor variations.

In this case, to convert a single-cycle date to an R.D. date, we add the days before the mean month in year, and the
days before day in month:

var-fixed-from-single-cycle (13)
def
(‘ year ‘ month ‘ day D =

single-cycle-epoch +
| (vear — 1) x average-year-length + delta-year + (month — 1) x average-month-length |
+day—1

where

average-year-length
average-month-length =

months-per-year

In the other direction, we compute the single-cycle date from an R.D. date by determining the year from the start
of the mean year using (1.68), the month from (1.68) applied to the month parameters, and the day by subtraction:

var-single-cycle-from-fixed (date) def (14)



‘ year ‘ month ‘ day ‘

where
days = date — single-cycle-epoch
offset = days+ 1 — delta-year
offset
year =
average-year-length

average-year-length
average-month-length

months-per-year

offset
month = 1+ —1] mod months-per-year
average-month-length
day = days+1- {delta-year—}-
offset
— 1 ) X average-month-length
average-month-length

3.3 Indian Mean Solar Calendar

Unlike other solar calendars, especially the universally-used Gregorian, the Indian calendars are based on the sidereal
(nakshatra) year. The old Hindu mean (madhyama) solar calendar is an example of the second version of our generic
solar calendar, using an estimate of the length of the sidereal year and mean sunrise as the critical time.

However, we need the fourth version of the formulas, with the determining event occurring before or at the critical
time:

alt-var-fixed-from-single-cycle (15)

def
(‘ year ‘ month ‘ day D =

single-cycle-epoch +
[ (vear — 1) x average-year-length — delta-year + (month — 1) x average-month-length |
+day—1

where

average-year-length

average-month-length =
months-per-year

alt-var-single-cycle-from-fixed (date) def (16)
| year | month | day |
where
days = date — single-cycle-epoch + delta-year

average-year-length

average-month-length
months-per-year



days
year = +1
average-year-length

days
month = 1+ mod months-per-year
average-month-length

day = |days mod average-month-length| + 1

Following the First Arya Siddhanta regarding year length, the constants we would need are

single-cycle-epoch def hindu-epoch a7
149
average-year-length def 36527 (18)
576
1
delta-year def 1 (19)
months-per-year def ) (20)

The above algorithms give a 1-based year number. The necessary changes for versions of the Indian calendar that
use elapsed years (including those in CCME) are trivial.

4 True Solar Calendars

One may say that a solar calendar is astronomical if the start of its years is determined by the actual time of a solar
event. The event is usually an equinox or solstice, so we presume it is the moment the true solar longitude attains some
given value, named critical-longitude below, and can assume that the true and mean times of the event differ by at
most 5 days.

The astronomical Persian calendar (Chapter 13 of CCME) uses a critical longitude of 0° for the spring equinox and
apparent noon in Tehran as its critical moment. The defunct French Revolutionary calendar (Chapter 15 of CCME)
used a critical longitude of 180° for the autumnal equinox and apparent midnight in Paris as its critical moment3

4.1 Generic Solar Calendars

Fixed-month versions of the true calendar usually have idiosyncratic month lengths. This is true of both the Persian
and Bah4’1 calendars; see Chapters 13—14 of CCME. So we restrict ourselves to the determination of New Year. First,
we define a function to determine the true longitude at the critical time of any given day, where the critical time is
determined by some function critical-time:

true-longitude (date) def (21)

solar-longitude (critical-time (date))

Since solar longitude increases at different paces during different seasons, we search for the first day the sun attains
the critical-longitude beginning five days prior to the mean time:

solar-new-year-on-or-after (date) def (22)

MIN

d>start

critical-longitude < true-longitude (d)
< critical-longitude + 2

3 A generic version of such calendars were given in our paper [2] as Lisp macros.



where

A = true-longitude (date)

start = date—5+ [ average-year-length x ﬁ

x ( ( critical-longitude — 1) mod 360 ) J

The initial estimate is based on the current solar longitude A, with an average daily increase of 360°/Y.
Solar New Year (Sowramana Ugadi) in a given Gregorian year is then computed as follows:

hindu-solar-new-year (g-year) def (23)

solar-new-year-on-or-after

(gregorian-from-ﬁxed(‘ g-year ‘ january ‘ 1 D)

which uses the R.D. to Gregorian conversion function gregorian-from-fixed of CCME.
For a variable-month version of the true calendar, such as the Indian solar calendar and its relatives, the start of
each month is also determined by the true solar longitude:

solar-from-fixed (date) def (24

‘ year ‘ m—+1 ‘ date — begin+ 1 ‘

where

A = true-longitude (date)

A
m =

30°
year = round

( critical-time (date) — solar-epoch A )

average-year-length 360°
approx = date—3— (|A] mod 30°)
true-longitude (i
begin = MIN {m: { “ gitude (7 J}
i>approx 30°

This function can be inverted using the methods of CCME (Section 17.2).

4.2 True Indian Solar Calendar

For the Indian solar calendar, we need to use the Indian sidereal longitude function (hindu-solar-longitude in CCME)
in place of solar-longitude (in the true-longitude function). The length of the sidereal year according to the Sirya-
Siddhanta is

279457

1080000

See Table[4. The year begins when the sun returns to sidereal longitude 0°. There are various critical times of day that
are used to determine exactly which day is New Year.

average-year-length = 365



Source Length
First Arya-Siddhanta 365.258681 36576"12"30°
Brahma-Siddhanta 365.258438 3659612 9°
Original Sirya-Siddhanta 365.258750 3659612"36°
Present Sirya-Siddhanta 365.258756  36596"1236.56°
Modern Value (for 1000 C.E.) | 365.256362 36596" 9™ 8.44°

Table 4: Sidereal year values.

According to the Orissa rule (followed also in Punjab and Haryana), sunrise is used. In other words, the solar
month is determined by the stellar position of the sun the following morning:

orissa-critical (date) def indu-sunrise (date+1) (25)

where hindu-sunrise is sunrise according to Indian rule or practice (Eq. 17.35 in CCME). See Section |7 for
details.

According to the Tamil rule, sunset of the current day is used:

tamil-critical (date) 4l hindu-sunset (date) (26)
where hindu-sunset is sunset according to Indian rule or practice.
According to the Malayali (Kerala) rule, 1:12 p.m. (seasonal time) on the current day is used:

malayali-critical (date) def (27)

hindu-sunrise (date) + g x (hindu-sunset (date) — hindu-sunrise (date))

Kerala also uses a different critical longitude.

According to some calendars from Madras, apparent midnight at the end of the day is used:

madras-critical (date) def (28)

hindu-sunset (date) + % x (hindu-sunrise (date + 1) — hindu-sunset (date))

According to the Bengal rule (also in Assam and Tripura), midnight at the start of the civil day is usually used,
unless the zodiac sign changes between 11:36p.m. and 12:24a.m. (temporal time), in which case various special
rules apply, depending on the month and on the day of the week.

See [8, page 12] and [1, page 282]. The function critical-time should be set to one of these.

4.3 Indian Astronomical Solar Calendar

For an astronomical Indian solar calendar, we need to substitute an astronomical calculation of sidereal longi-
tude for solar-longitude in true-longitude. We also should use astronomical geometric sunrise (and/or sunset) for
hindu-sunrise (and hindu-sunset) in critical-time; see Section[7]

The difference between the equinoctal and sidereal longitude (the ayanamsha) changes with time, as a direct

consequence of precession of the equinoxes. It is uncertain what the zero point of Indian sidereal longitude is, but it is
customary to say that the two measurements coincided circa 285 C.E., the so-called “Lahiri ayanamsha”. Others (for

10
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Figure 2: Difference (1000—1001 C.E.) between siddhantic and astronomical sidereal solar longitude (solid black

line). Dotted white line (atop the black line) uses mathematical sine function, rather than an interpolated tabular sine;
dashed gray line uses fixed epicycle; they are virtually indistinguishable.
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example [10; Section 18]) suggest the two measurements coincided around 560 C.E. Either way, the over-estimate of
the length of the mean sidereal year used by the siddhantas leads to a growing discrepancy in the calculation of solar
longitude; see Table 4. (The length of the sidereal year is increasing by about 10~ seconds per year.)

The Indian Vernal equinox, when the sun returns to sidereal longitude 0°, is called Mesha samkranti. Solar New
Year, the day of Mesha samkranti, as computed by hindu-solar-new-year with traditional year lengths, is nowadays
about 4 days later than that which would be obtained by astronomical calculation (assuming the Lahiri value).

To calculate sidereal longitude, we use the algorithm for precession in [7, pages 136—137]:

precession () def (p+P—arg) mod 360 (29)
where

¢ = julian-centuries (1)

n - ( 47.0029" x ¢+ (—0.03302)" x 2 + (6 x 1075)" x 3 ) mod 360

P - ( 174.876384° + (—869.8089)" x ¢ +0.03536" x 2 ) mod 360

P - ( 5029.0966" x ¢+ 1.11113" x & + (6 x 1076)" x 3 ) mod 360

A = cosm X sinP

B = cosP

arg = arctan; (A,B)

where julian-centuries measures the (dynamical) time before/after noon on 1 January 2000, and the second argument
of arctan, determines the quadrant:

def o ifb>0
arctanm (a,h) = mod 360 (30)
o+ 180° otherwise
where
a
X = —
b
o = arctanx

We need the value of this function when the ayanamsha was 0.

sidereal-start ' (3D

precession
(universal-from-local
(mesha-samkranti (285 C.E.) ,hindu-locale) )

where mesha-samkranti gives the local time of the (sidereal) equinox, Ujjain is our hindu-locale, and
universal-from-local is one of the time conversion functions of CCME. Then

def

sidereal-solar-longitude () (32)

( solar-longitude (1) — precession (¢) + sidereal-start ) mod 360

12



That done, we can compare the astronomical calendar with the approximations used in the true Indian calendar.

The cumulative effect over the centuries of the difference in length of the sidereal year on the time of Mesha
samkranti, and on the sidereal longitude at that time, is shown in Figure[1] In 1000 C.E., it stood at about 1°37'.

The average difference between the calculated sidereal longitude and the astronomical values was 2°3' during
1000-1002 C.E. In addition, Figure 2 shows a periodic discrepancy of up to 412’ between the siddhantic estimate of
solar longitude and the true values. The figure also suggests that neither the interpolated stepped sine function used
in traditional astronomy, nor the fluctuating epicycle of Indian theory (using the smallest [best] size, instead), make a
noticeable difference for the sun. In other words, the tabular sine and arcsine functions (see Table 17.2 in CCME) are
precise enough for the purpose, while the theory of changing epicycle (see Figure 17.1 in CCME) is unnecessary for
the sun.

The difference in longitude for a given moment ¢, Ujjain local time, is calculated as

hindu-solar-longitude(r) — sidereal-solar-longitude(universal-from-local(z, hindu-locale))

5 Lunisolar Calendars

The lunisolar calendar type is represented by the Chinese, Hebrew, and Easter calendars today, as well as some of
the Indian and other Asian cultures, and was historically very popular. The basic idea is that months follow the lunar
cycle, with leap months added every 2-3 years, so that the average year length matches the sun’s apparent celestial
revolution. Indian lunisolar calendars can be further subdivided into those whose months begin with each new moon
(the amanta scheme) and those that go from full-moon to full-moon (pirnimanta).

The Hebrew and Easter calendars follow a fixed leap-year cycle, as did the old Hindu mean lunisolar calendar;
the Chinese and modern Hindu calendars determine each month and year according to the true positions of the sun
and moon. Unlike the Hebrew lunisolar calendar, with its 19-year cycle of 7 leap years, Indian intercalated months,
in the mean scheme, do not follow a short cyclical pattern. Rather, in the Arya-Siddhanta version, there are 66,389
leap years in every 180,000-year cycle. The Hebrew, Easter, and mean Indian leap-year rules all distribute leap years
evenly over the length of the cycle.

Lunisolar calendars can also come in the same two flavors, fixed- and variable-month patterns. The Indian mean
lunisolar calendar has variable months, like its solar sister; the Hebrew calendar has a more-or-less fixed scheme (see
Chapter 7 of CCME for details).

In the fixed-month scheme, one fixed month (usually the last) of the 13 months of a leap year is considered the
leap month, so one can just number them consecutively. This is not true of the Indian calendar, in which any month
can be leap, if it starts and ends within the same (sidereal) zodiacal sign.

Unlike other calendars, a day on the mean Indian calendar can be omitted any time in a lunar month, since the day
number is determined by the phase of the mean moon. Here we concentrate on the leap year structure; see CCME for
other details.

Let Y and M be the lengths of the mean solar year and lunar month in days, respectively, where ¥ > M > 1 are
positive reals. If ¥ is not a multiple of M, then there will be common years of |Y /M| months and leap years of length
[Y /M| months. Then a year has ¥ /M months on the average, with a leap-year frequency of (¥ mod M) /M.

The basic idea of the dual-cycle calendar is to first aggregate days into months and then months into years. Elapsed
months are counted in the same way as years are on the single-cycle calendar, using an average length of M instead of
Y. Then, years are built from multiple units of months, rather than days, again in a similar fashion to a single-cycle
calendar.

For the Indian mean lunar calendar, according to the Arya Siddhanta, we would use the values

— 149
Y = 3651

— 2362563
M = 294452778

and sunrise as the critical time of day. The Hebrew calendar also follows a dual-cycle pattern, with

— 13753
M = 2925920

— 285
Y = Bm

and noon as critical moment, but exceptions can lead to a difference of up to 3 days.
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To convert from a 0-based lunisolar date (y,m,d) to a day count:
[(LY/M]|+m)M] +d
In the other direction, we have

m = |n/M|
[(m+1)M/Y] -1
m=m—|yY/M|

d =n—[mM]|

<
Il

When the leap month is not fixed and any month can be leap, as in the Indian calendar, we would use an extra,
Boolean component for dates, (y,m,¥,d), and need to determine which month is leap. On the Chinese calendar, the
first lunar month in a leap year (counting from month 11 to month 11) during which the sun does not change its
zodiacal sign is deemed leap. In the Indian scheme, the rule is similar: Any month in which the sidereal sign does not

change is leap.
As was the case for the solar calendars, there are variants corresponding to whether the critical events may also
occur at the critical moments.

6 True Lunisolar Calendar
The general form of the determination of New Year on a lunisolar calendar is as follows:

1. Find the moment s when the sun reaches its critical longitude.
2. Find the moment p when the moon attains its critical phase before (or after) s.

3. Choose the day d before (or after) p satisfying additional criteria.

Some examples include:

o The Niczan rule for Easter is the first Sunday after the first full moon on or after the day of the Spring equinox.
See Chapter 8 of CCME.

e The classical rule for the first month (Nisan) of the Hebrew year was that it start on the eve of the first observable
crescent moon no more than a fortnight before the Spring equinox. See Section 12.9 of CCME.

e The eleventh month of the Chinese calendar almost always begins with the new moon on or before the day of
the winter solstice (270°). Chinese New Year is almost always the new moon on or after the day the sun reaches
300°. See Chapter 16 of CCME.

e Indian Lunar New Year is the (sunrise-to-sunrise) day of the last new moon before the sun reaches the fixed First
Point in Aries (0° sidereal). See Chapter 17 of CCME.

Using the functions provided in CCME:
1. The moment s can be found with solar-longitude-after (Section 12.4).
2. Finding the moment p can be accomplished with lunar-phase-before or lunar-phase-after (Section 12.5).

3. Choosing the day is facilitated by kday-on-or-after and its siblings (Section 1.10).

For example, the winter-solstice-to-winter-solstice period is called a sui ( &) on the Chinese calendar. Hence, the
start of the Chinese month in which a sui begins, that is, the month containing the winter solstice (almost always the
eleventh month, but on occasion a leap eleventh month) is determined by

sui-month-start (date) def (33)
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L standard-from-universal

(moon, chinese-location (date)) |

where
sun = universal-from-standard
(| standard-from-universal
( solar-longitude-after (date,270°) , chinese-location (date) ) |,
chinese-location (date) )
moon = lunar-phase-before (sun+ 1,0°)

For the Indian calendars, the functions should use sidereal longitudes and can be traditional or astronomical, as
desired. Using the astronomical code of CCME, we can define

def

sidereal-solar-longitude-after (z,) = (34)
u—I<e
M{{l\]f ( ( sidereal-solar-longitude (x) —¢ ) mod 360 ) < 180°
x€(lu
where
€ = 107
average-year-length
rate =
360°
T = t+ ratex ( ( ¢ —sidereal-solar-longitude(r) ) mod 360)
l = max{r,T—5}
u = T+5

The function MIN performs a bisection search in [/,u] with accuracy €.
For the traditional Hindu calendar, we would use hindu-solar-longitude-after (Chapter 17 of CCME) instead of
sidereal-solar-longitude-after and use the following in place of lunar-phase-before:

def

hindu-lunar-phase-before (,¢) = (35)
ﬁlﬁ\? ((hindu-lunar-phase (x) — ¢) mod 360)
x€[lu] < 180°
where
e = 277
T =t — hindu-synodic-month x ﬁ
x ((hindu-lunar-phase (r) —¢) mod 360)
l = 1-2
u = min{t,T+2}
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Figure 3: Tithi time differences, 1000-1001 C.E. (in hours).

Then we can use the following to compute the start of Indian lunisolar month m:

def

hindu-lunar-month-on-or-after (date,m) = (36)
date if moon < hindu-sunrise (date)
{ date+1 otherwise
where
A = (m—1)x30°
sun = hindu-solar-longitude-after (date,\)
moon = hindu-lunar-phase-before (sun,0°)
date = |moon|

This code does not check whether m may be expunged.

The time of the tithis (lunar “days”, corresponding to 30ths of the lunar phase cycle) differs an average of less than
13 minutes between the traditional and astronomical calculations (again in 1000 C.E.). See Figure 3.

Figure [4]shows the same (nil) impact of sine and epicycle (using the biggest epicycle) on the calculation of lunar
sidereal longitude as we found in the solar case. Moreover, the 16th century correction (bija) of Gannesa Daivajna
for the length of the anomalistic months (from 488,203 revolutions of the apogee in a yuga to 488,199) also is of
no consequence (in the 16th century as well as in the 11th). The difference between the calculated longitude and
astronomical values was 1°56' & 3°25’.

In the true version of the Indian lunisolar calendar, months, called kshaya, may also be expunged, when two
zodiacal sign transitions occur in one lunar month. Thus, even a 12-month year can have a leap month (as was the case
in 1963—4), and a leap year can even have two (as in 1982-3). See our Calendrical Tabulations [6].

There are several competing conventions as to the placement and naming of leap months and excision of suppressed
months; see [8, page 26].

16



100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

50

Figure 4: Difference (1000-1001 C.E.) between siddhantic and astronomical sidereal lunar longitude (solid black

line). Dashed light gray line (atop the black line) uses the mathematical sine function, rather than an interpolated
tabular sine; white dashed line (largely overlaying the solid black line) uses a fixed epicycle; the gray dotted line is

sans bija correction; they are virtually indistinguishable.
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Figure 5: Sunrise, Hindu and astronomical, 1000 C.E. Difference in sunrise times is shown as a solid line; the differ-
ence of just the equation of time calculation is shown as a dashed line.

7 Sunrise

Generally, Indian calendarists advocate the use of geometric sunrise for calendrical determinations!*

hindu-sunrise (date) def (37)
dawn (date, hindu-locale,0°)

Lahiri, however, suggests a depression angle of 47’ (including 31’ for refraction); astronomers use 50'.

As is well-known, the original siddhantic calculation for sunrise uses a simple approximation for the equation of
time. Figure[6/compares the two versions. Using an accurate equation of time, but otherwise following the siddhantic
method for sunrise, agrees closely with geometric sunrise. See Figure|[3.

8 Holidays

Many of the holidays in India depend on the local lunisolar calendar. Table [5/lists some of the more popular holidays.
(For a comprehensive list in English, see [9].) There is a very wide regional variance in timing and duration of holidays.

In general, holidays do not occur in leap months or on leap days. If a month is skipped, as happens intermittently
(with gaps of 19 to 141 years between occurrences), then the “lost” holidays are moved to the next nonth depending,
again, on regional conventions. In many places, rather than skip a whole month, two half months are skipped and their
holidays are moved backward or forward, depending on which lost half-month they are meant to occur in.

4Pal Singh Purewal [personal communication, April 29, 2002]: “Most Indian almanac editors give and advocate the use of centre of solar disk
for sunrise without refraction.”
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Figure 6: The equation of time in 1000 C.E. The astronomical version is shown as a solid line; the Hindu version is
shown as a dashed line. The left vertical axis is marked in minutes and the right vertical axis is marked in fractions of
a day.

| Holiday | Lunar Date(s) |
New Year (Chandramana Ugadi) Chaitra 1
Birthday of Rama Chaitra 9
Birthday of Krishna (Janmashtamt) Srévana 23
Ganésa Chaturthi Bhadrapada 3 or 4
Dashara (Nava Rathri), last 3 days | A$vina 8-10
Diwali, last day Kartika 1
Birthday of Vishnu (Ekadashi) Margasirsha 11
Night of Siva Magha 28 or 29
Holi Phalguna 15

Table 5: Some Hindu lunisolar holidays.
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The precise day of observance of a lunisolar event usually depends on the time of day (sunrise, noon, midnight,
etc.) at which the moon reaches a critical phase (#ithi). According to [4], for example, GangSa Chaturthi is celebrated
on the day in which tithi (lunar day) 4 is current in whole or in part during the midday period 10:48a.m. — 1:12p.m.
(temporal time). If that lunar day is current during that time frame on two consecutive days, or if it misses that time
frame on both days, then it is celebrated on the former day

Appendix—The Lisp Code

This appendix contains Common Lisp source code for the algorithms presented in the preceding sections. CCME
should be consulted for undefined functions and macros.

1 (defun fixed-from-single-cycle (s-date)

2 ;i TYPE single-cycle-date -> fixed-date

3 (let* ((year (standard-year s-date))

4 (month (standard-month s-date))

5 (day (standard-day s-date)))

6 (+ single-cycle-epoch

7 (floor (+ (* (1- year) average-year-length)

8 delta-year))

9 (floor (+ (* (1- month) average-month-length)
10 delta-month))

1 day -1)))

1 (defun single-cycle-from-fixed (date)

2 i+ TYPE fixed-date -> single-cycle-date

3 (let* ((days (- date single-cycle-epoch))

4 (year (ceiling (- days -1 delta-year)

5 average-year-length))

6 (n (- days (floor (+ delta-year

7 (* (1- year) average-year-length)))))
8 (month (ceiling (- n -1 delta-month) average-month-length))
9 (day (- n -1 (floor (+ delta-month

10 (* (1- month)

1 average-month-length))))))

12 (hindu-solar-date year month day)))

1 (defun alt-fixed-from-single-cycle (s-date)

2 ;7 TYPE single-cycle-date -> fixed-date

3 (let* ((year (standard-year s-date))

4 (month (standard-month s-date))

5 (day (standard-day s-date)))

6 (+ single-cycle-epoch

7 (ceiling (- (* (1- year) average-year-length)

8 delta-year))

9 (ceiling (= (* (1- month) average-month-length)
10 delta-month))

1 day -1)))

1 (defun alt-single-cycle-from-fixed (date)
2 ;7 TYPE fixed-date -> single-cycle-date

3 (let* ((days (+ (- date single-cycle-epoch) delta-year))
4 (year (1+ (quotient days average-year-length)))

5 (n (+ (mod days average-year-length) delta-month))
6 (month (1+ (quotient n average-month-length)))

7 (day (1+ (floor (mod n average-month-length)))))

8 (hindu-solar-date year month day)))

SPrecise details for the individual holidays are difficult to come by.
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(defun var-fixed-from-single-cycle (s-date)
;7 TYPE single-cycle-date -> fixed-date
(let* ((year (standard-year s-date))
(month (standard-month s-date))
(day (standard-day s-date))
(average-month-length (/ average-year-length
months-per-year)))
(+ single-cycle-epoch
(floor (+ (* (1- year) average-year-length)
delta-year
(* (1- month) average-month-length)))
day -1)))

(defun var-single-cycle-from-fixed (date)
i+ TYPE fixed-date -> single-cycle-date
(let* ((days (- date single-cycle-epoch))
(offset (- days -1 delta-year))
(year (ceiling offset average-year-length))
(average-month-length (/ average-year-length
months-per-year))
(month (+ 1 (mod (1- (ceiling offset average-month-length))
months-per-year)))
(day (- days -1
(floor (+ delta-year
(* (1- (ceiling offset average-month-length))
average-month-length))))))
(hindu-solar-date year month day)))

(defun alt-var-fixed-from-single-cycle (s-date)
;7 TYPE single-cycle-date -> fixed-date
(let* ((year (standard-year s-date))
(month (standard-month s-date))
(day (standard-day s-date))
(average-month-length (/ average-year-length
months-per-year)))
(+ single-cycle-epoch
(ceiling (+ (* (1- year) average-year-length)
(- delta-year)
(* (1- month) average-month-length)))
day -1)))

(defun alt-var-single-cycle-from-fixed (date)

;7 TYPE fixed-date -> single-cycle-date

(let* ((days (+ (- date single-cycle-epoch) delta-year))
(average-month-length (/ average-year-length

months-per-year))
(year (1+ (quotient days average-year-length)))
(month (+ 1 (mod (quotient days average-month-length)
months-per-year)))
(day (1+ (floor (mod days average-month-length)))))
(hindu-solar-date year month day)))

(defun true-longitude (date)
;7 TYPE moment -> longitude
(solar-longitude (critical-time date)))

(defun solar-new-year-on-or-after (date)

;7 TYPE fixed-date -> fixed-date
;7 Fixed date of solar new year on or after fixed date.
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(let* ((lambda (true-longitude date))
(start
(+ date -5
(floor (* average-year-length 1/360
(mod (- critical-longitude lambda) 360))))))
(next d start
(<= critical-longitude
(true-longitude d)
(+ critical-longitude 2)))))

(defun hindu-solar-new-year (g-year)
;i TYPE gregorian-year -> fixed-date
;; Fixed date of Hindu solar New Year in Gregorian year.
(solar-new-year-on-or-after
(gregorian-from-fixed
(gregorian-date g-year january 1))))

(defun solar-from-fixed (date)
;7 TYPE fixed-date -> solar-date
;7 Solar date equivalent to fixed date.
(let* ((lambda (true-longitude date))
(m (quotient lambda (deg 30)))
(year (round (- (/ (- (critical-time date) solar-epoch)
average-year-length)
(/ lambda (deg 360)))))
(approx ; 3 days before start of mean month.
(- date 3
(mod (floor lambda) (deg 30))))
(begin ; Search forward for beginning...

(next i approx ; ... of month.
(= m (quotient (true-longitude 1)
(deg 30))))))
(hindu-solar-date year (1+ m) (- date begin -1))))

(defun orissa-critical (date)
;7 TYPE fixed-date -> moment
;7 Universal time of critical moment on or after date
;7 according to the Orissa rule
(hindu-sunrise (1+ date)))

(defun tamil-critical (date)
;7 TYPE fixed-date -> moment
;7 Universal time of critical moment on or after date
;7 according to the Tamil rule
(hindu-sunset date))

(defun malayali-critical (date)
;7 TYPE fixed-date -> moment
;7 Universal time of critical moment on or after date
;7 according to the Malayali rule
(+ (hindu-sunrise date)
(* 3/5 (- (hindu-sunset date) (hindu-sunrise date)))))

(defun madras-critical (date)
;7 TYPE fixed-date -> moment
;7 Universal time of critical moment on or after date
;7 according to the Madras rule
(+ (hindu-sunset date)
(* 1/2 (- (hindu-sunrise (1+ date)) (hindu-sunset date)))))
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(defun precession (tee)

;7 Meeus, page 136-137
;7 Using 0,0 as J2000 coordinates
(let* ((c (julian-centuries tee))

(eta (mod (+ (* (seconds 47.002910) c)
(* (seconds -0.0330210) (expt c 2))
(* (seconds 0.00006010) (expt c 3)))
))
+ (deg 174.87638410)

(* (seconds -869.808910) c)

(* (seconds 0.0353610) (expt c 2)))
360))
(* (seconds 5029.096610) c)

(* (seconds 1.1111310) (expt c 2))

(* (seconds 0.00000610) (expt c 3)))
360))
cap-A (* (cosine-degrees eta) (sin-degrees cap-P)))
cap-B (cosine-degrees cap-P))
arg (arctan2 cap-A cap-B)))
- (+ p cap-P) arg) 360)))

360
(cap-P (mod (

(p (mod (+

(
(
(
(mod (

(defun arctan2 (A B)
(let* ((x (/ A B))
(alpha (radians-to-degrees (atan x))))
(mod (if (>= B 0)
alpha
(+ alpha (deg 18010)))
360)))

(defconstant sidereal-start
(precession (universal-from-local
(mesha-samkranti (ce 285))
hindu-locale)))

(defun sidereal-solar-longitude (tee)
;7 TYPE moment -> angle
;7 Sidereal solar longitude at moment tee
(mod (+ (solar-longitude tee)
(- (precession tee))
sidereal-start)
360))

(defun sui-month-start (date)
;7 TYPE fixed-date -> fixed-date
;7 Fixed date of start of Chinese month containing solstice
;7 occurring on or after date.
(let* ((sun (universal-from-standard
(floor (standard-from-universal
(solar-longitude-after date (deg 270))
(chinese-location date)))
(chinese-location date)))
(moon (lunar-phase-before (1+ sun) (deg 0))))
(floor (standard-from-universal moon (chinese-location date)))))

(defun sidereal-solar-longitude-after (tee phi)
;7 TYPE (moment season) -> moment
;7 Moment UT of the first time at or after tee
;7 when the sidereal solar longitude will be phi degrees.
(let* ((varepsilon 1d-5) ; Accuracy of solar-longitude.
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6 (rate ; Mean days for 1 degree change.

7 (/ average-year-length (deg 360)))

8 (tau ; Estimate (within 5 days).

9 (+ tee

10 (* rate

1 (mod (- phi (sidereal-solar-longitude tee)) 360)))
12 (1 (max tee (- tau 5))) ; At or after tee.

13 (u (+ tau 5)))

14 (binary-search ; Bisection search.

15 11

16 uu

17 x (< (mod (- (sidereal-solar-longitude x) phi) 360)
18 (deg 18010))

19 (< (= u l) varepsilon))))

1 (defun hindu-lunar-phase-before (tee phi)

2 ;7 TYPE (moment phase) -> moment

3 ;7 Moment UT of the last time at or before tee

4 7+ when the Hindu lunar-phase was phi degrees.

5 (let* ((varepsilon (expt 2 -17)) ; Accuracy.

6 (tau ; Estimate.

7 (- tee

8 (* hindu-synodic-month 1/360

9 (mod (- (hindu-lunar-phase tee) phi) 360))))
10 (I (- tau 2))

1 (u (min tee (+ tau 2)))) ; At or before tee.
12 (binary-search ; Bisection search.

13 11

14 uu

15 x (< (mod (- (hindu-lunar-phase x) phi) 360)

16 (deg 18010))

17 (< (= u l) varepsilon))))

1 (defun hindu-lunar-month-on-or-after (date m)

2 ;7 TYPE fixed-date -> fixed-date

3 ;7 Fixed date of first lunar moon on or after fixed date.
4 (let* ((lambda (* (1- m) (deg 30)))

5 (sun (hindu-solar-longitude-after date lambda))

6 (moon (hindu-lunar-phase-before sun (deg 0)))

7 (date (floor moon)))

8 (1f (<= moon (hindu-sunrise date))

9 date (1+ date))))

1 (defun hindu-sunrise (date)

2 ;7 TYPE fixed-date -> moment

3 ;7 Geometrical sunrise at Hindu locale on date.

4 (dawn date hindu-locale (deg 0)))
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